7 resultados para Plant pests and diseases

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Explores the sui generis protection of intellectual property, particularly patents, in biotechnology and traditional agricultural knowledge under Indian law. Focuses on the impact of amendments to the Patents Act 1970 and of the Plant Variety Protection and Farmers' Rights Act 2001 and Biological Diversity Act 2002.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The so-called ‘biotechnology clause’ of Article 27.3(b) of the WTO-TRIPS Agreement requires from member states protection for plant varieties either via the patent system or via an ‘effective sui generis system’ or by a combination of the two. Many developing countries prefer forms of sui generis protection, which allow them to include exceptions and protection measures for traditional agricultural practices and the traditional knowledge of farmers and local communities. However, ‘traditional knowledge’ remains a vaguely defined term. Its extension to biodiversity has brought a diffusion of the previously clearer link between protected subject matter, intellectual property and potential beneficiaries. The Philippine legislation attempts a ‘bottom-up’ approach focusing on the holistic perceptions of indigenous communities, whereas national economic interests thus far receive priority in India’s more centralist approach. Administrative decentralisation, recognition of customary rights, disclosure requirements, registers of landraces and geographical indications are discussed as additional measures, but their implementation is equally challenging. The article concludes that many of the concepts remain contested and that governments have to balance the new commercial incentives with the biodiversity considerations that led to their introduction, so that the system can be made sufficiently attractive for both knowledge holders and potential users of the knowledge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigen-specific antibody responses against a model antigen (the B subunit of the heat labile toxin of enterotoxigenic Escherichia coli, LTB) were studied in sheep following oral immunisation with plant-made and delivered vaccines. Delivery from a root-based vehicle resulted in antigen-specific immune responses in mucosal secretions of the abomasum and small intestine and mesenteric lymph nodes. Immune responses from the corresponding leaf-based vaccine were more robust and included stimulation of antigen-specific antibodies in mucosal secretions of the abomasum. These findings suggest that oral delivery of a plant bioencapsulated antigen can survive passage through the rumen to elicit mucosal and systemic immune responses in sheep. Moreover, the plant tissue used as the vaccine delivery vehicle affects the magnitude of these responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the site of release of a model vaccine antigen from plant cells and the corresponding induced immune response. Three plant tissues (leaf, fruit and hairy root) and two formulations (aqueous and lipid) were compared in two mouse trials. A developed technique that enabled detection of antigen release by plant cells determined that antigen release occurred at early sites of the gastrointestinal tract when delivered in leaf material and at later sites when delivered in hairy roots. Lipid formulations delayed antigen release from all plant materials tested. While encapsulation in the plant cell provided some protection of the antigen in the gastrointestinal tract and influenced antigen release, formulation medium was also an important consideration with regard to vaccine delivery and immunogenicity. Systemic immune responses induced from the orally delivered vaccine benefited from late release of antigen in the mouse gastrointestinal tract. The influences to the mucosal immune response induced by these vaccines were too complex to be determined by studies performed here with no clear trend regarding plant tissue site of release or formulation medium. Expression and delivery of the model antigen in plant material prepared in an aqueous formulation provided the optimal systemic and mucosal, antigen-specific immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diseases in natural ecosystems are often assumed to be less severe than those observed in domestic cropping systems due to the extensive biodiversity exhibited in wild vegetation communities. In Australia, it is this natural biodiversity that is now under threat from Phytophthora cinnamomi. The soilborne Oomycete causes severe decline of native vegetation communities in south-western Victoria, Australia, disrupting the ecological balance of native forest and heathland communities. While the effect of disease caused by P. cinnamomi on native vegetation communities in Victoria has been extensively investigated, little work has focused on the Anglesea healthlands in south-western Victoria. Nothing is known about the population structure of P. cinnamomi at Anglesea. This project was divided into two main components to investigate fundamental issues affecting the management of P. cinnamomi in the Anglesea heathlands. The first component examined the phenotypic characteristics of P. cinnamomi isolates sampled from the population at Anglesea, and compared these with isolates from other regions in Victoria, and also from Western Australia. The second component of the project investigated the effect of the fungicide phosphonate on the host response following infection by P. cinnamomi. Following soil sampling in the Anglesea heathlands, a collection of P, cinnamomi isolates was established. Morphological and physiological traits of each isolate were examined. All isolates were found to be of the A2 mating type. Variation was demonstrated among isolates in the following characteristics: radial growth rate on various nutrient media, sporangial production, and sporangial dimensions. Oogonial dimensions did not differ significantly between isolates. Morphological and physiological variation was rarely dependant on isolate origin. To examine the genetic diversity among isolates and to determine whether phenotypic variation observed was genetically based, Random Amplified Polymorphic DNA (RAPD) analyses were conducted. No significant variation was observed among isolates based on an analysis of molecular variance (AMQVA). The results are discussed in relation to population biology, and the effect of genetic variation on population structure and population dynamics. X australis, an arborescent monocotyledon indigenous to Australia, is highly susceptible to infection by P. cinnamomi. It forms an important component of the heathland vegetation community, providing habitat for native flora and fauna, A cell suspension culture system was developed to investigate the effect of the fungicide phosphonate on the host-pathogen interaction between X. australis and P. cinnamomi. This allowed the interaction between the host and the pathogen to be examined at a cellular level. Subsequently, histological studies using X. australis seedlings were undertaken to support the cellular study. Observations in the cell culture system correlated well with those in the plant. The anatomical structure of X australis roots was examined to assist in the interpretation of results of histopathological studies. The infection of single cells and roots of X. australis, and the effect of phosphonate on the interaction are described. Phosphonate application prior to inoculation with P. cinnamomi reduced the infection of cells in culture and of cells in planta. In particular, phosphonate was found to stimulate the production of phenolic material in roots of X australis seedlings and in cells in suspension cultures. In phosphonate-treated roots of X australis seedlings, the deposition of electron dense material, possibly lignin or cellulose, was observed following infection with P. cinnamomi. It is proposed that this is a significant consequence of the stimulation of plant defence pathways by the fungicide. Results of the study are discussed in terms of the implications of the findings on management of the Anglesea heathlands in Victoria, taking into account variation in pathogen morphology, pathogenicity and genotype. The mode of action of phosphonate in the plant is discussed in relation to plant physiology and biochemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants are an important source for medicinal compounds. Chemical screening and selection is critical for identification of compounds of interest. Ocimum basilicum (Basil) is a rich source of polyphenolics and exhibits high diversity, therefore bioprospecting of a suitable cultivar is a necessity. This study reports on the development of a true to type novel "in vitro system" and its comparison with a conventional system for screening and selection of cultivars for high total phenolics, individual polyphenolics, and antioxidant content. We have shown for the first time using online acidic potassium permanganate chemiluminescence that extracts from Ocimum basilicum showed antioxidant potential. The current study identified the cultivar specific composition of polyphenolics and their antioxidant properties. Further, a distinct relationship between plant morphotype and polyphenolic content was also found. Of the 15 cultivars examined, "Holy Green", "Red Rubin", and "Basil Genovese" were identified as high polyphenolic producing cultivars while "Subja" was determined to be a low producer. The "in vitro system" enabled differentiation of the cultivars in their morphology, polyphenolic content, and antioxidant activity and is a cheap and efficient method for bioprospecting studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 Questions: Do nurse plant interactions significantly influence understorey vegetation diversity in a large, semi-arid, shrub-dominated wetland? How do the modes and net effects of nurse plant interactions vary spatially along a flood frequency gradient, and temporally in response to drying? Location: Narran Lakes Ramsar site, New South Wales, Australia. Methods: Microhabitat characteristics, understorey vegetation and germinable soil seed banks were investigated in shrub and open habitats across a flood frequency gradient in a large, semi-arid wetland dominated by open shrubland under productive conditions following floodwater recession and again following 6 mo of drought. Split-plot ANOVA and multivariate analyses were used to determine the effects of shrubs on microhabitat character, understorey vegetation cover, species diversity, richness and composition and germinable soil seed banks. Results: Microhabitat characteristics, including canopy cover, litter cover and soil character, all differed between shrub and open habitats, especially in the most frequently flooded sites. Under productive conditions following flooding, lignum shrubs suppressed understorey vegetation cover but increased species richness at the site scale across the flood frequency gradient and, in the most frequently flooded sites, supported higher species density at a microhabitat scale. Under dry conditions, lignum shrubs had a positive effect on understorey vegetation cover, species richness and species density across the flood frequency gradient, but particularly in frequently flooded sites. A significant difference in soil seed bank composition between shrub and open habitats was only observed in frequently flooded sites. Conclusions: Nurse plant interactions appear to play an important role in determining understorey vegetation diversity in the lignum shrubland of the Narran Lakes wetland system. The modes and net effects of these nurse plant interactions vary in space and time in relation to flood history and drying. Positive interactions, probably involving microhabitat amelioration, appear to be particularly important to plant diversity and abundance under dry conditions. Under more favourable wetter conditions, lignum shrubs also contribute to understorey vegetation diversity by facilitating the establishment of different species than those dominating open habitats. Our findings have implications for the management of perennial shrubs and hydrological regimes in such wetlands.